Assassination Weapons, Mechanical

views updated May 23 2018

Assassination Weapons, Mechanical

Throughout history, governments and groups have employed the tactic of assassination: a sudden, usually unexpected act of murder committed for impersonal reasons. The reasons for resorting to assassination have become perhaps a bit more complex as the balances of power have become more intricate, but not especially so. The purpose of assassination remains essentially the same as it was 4,000 years ago: to bring about political change quickly, or to remove someone considered a threat. The methods of assassination themselves, however, have changed greatly.

Mechanical weapons contrasted with biochemical techniques. In discussing assassination techniques, it is useful to divide these into mechanical and biochemical means. As their names imply, the first type of weapon gains its potency from its physical properties, whereas the second kills primarily through its effect on the individual's biochemistry. Into the first category would fall the basic types

of weapon to be discussed here: bludgeons, knives, guns, and other firing devices.

To varying degrees, all of these use the mechanical principles of force, pressure, and momentum, which are related through various ratios involving the fundamental physical interactions of mass, length, and time. Additionally, several are variations on the three classic "simple machines" of classical mechanics: the inclined plane (knife), the lever (the firing mechanism of a pistol), and the hydraulic press (some types of firing devices other than pistols).

Areas of overlap. There is often considerable overlap between mechanical and biochemical assassination weapons. At the simplest level, all ultimately kill by impacting some aspect of the victim's biochemistry, if only by causing his brain or heart to shut down, thus bringing an end to the functions of the body itself. Furthermore, firearms employ chemical properties. The gunpowder in a bullet undergoes a chemical, rather than a merely physical change. A physical change, such as the freezing of water, is reversible, but once gunpowder has chemically been altered by the addition of heat and the process of combustion brought about by interaction with oxygen, it turns into fire, smoke, and ashand a fraction of it becomes energysuch that it can never become gunpowder again.

Another area of overlap is the use of firing devices to deploy the materials of biochemical assassinationthat is, poisons. A classic example is the poison pen, most effectively employed by the Soviet KGB. Disguised as an ordinary writing pen, the device fired hydrocyanic acid in the form of gas. Another KGB pen-cum-assassination weapon fired pellets of ricin, a poison long favored by agents in the assassination squad known as SMERSH.

SMERSH, poison pistols, and ricin. SMERSH used variations on this technique to eliminate several Bulgarian dissidents living abroad in the 1970s. The most famous example of this occurred in London, where SMERSH caught up with journalist Georgi Markov in September 1978. As an unsuspecting Markov stood waiting in a crowd for a bus at Waterloo Bridge, a man walked past him and accidentallyor so it seemedjabbed him in the thigh with the pointed end of his umbrella. The man apologized and walked on past. Within a few hours, Markov was dead. The man with the umbrella was a SMERSH assassin, and the pointed tip of his umbrella had fired a platinum pellet containing ricin. So clever was this method of murder that it took some time before Western intelligence operatives realized what had happened, and arranged for Markov's body to be exhumed. Only then did they discover the pellet.

In this and other such cases, a biochemical agent actually caused death, yet the method of delivery was mechanical. In the same way, poison that passes through a syringe (a hydraulic pump) into the victim's body is a biochemical weapon delivered by mechanical means. By contrast, when the Aum Shinrikyo cult employed ricin to kill 12 commuters, and injure thousands more, in a Tokyo subway in 1995, they used it in the form of gasan almost purely biochemical technique. Victims inhaled the gas, which went to work immediately on their systems.

Basic types of mechanical assassination weapon. The weapons under discussion here fall into a few broad categories: bludgeons; knives and other sharp objects; guns and other firing devices; and miscellaneous weapons. An encyclopedic treatment of such weapons would fill an entire book, especially where guns are concerned. Therefore, the focus here is confined to weapons, noted for their clever design or means of concealment that were developed by and for covert action organizations or similar groups. Even then, it is possible only to touch on a few notable examples.

Few of these weapons are known to be associated with a particular assassination, in part because most assassinations committed by covert-action organizations probably go undetected. Furthermore, the vast majority of assassinations are probably not directed against figures well known to the public at large, and therefore are likely to escape public attention. When Markov died, for instance, the people most likely to note the event were primarily in Bulgaria, where state-fed disinformation effectively covered all incriminating details regarding the cause of death.

Bludgeons and blunt instruments. A number of the potential assassination weapons that fall under the general heading of bludgeon are or were weapons for close combat also used in situations other than assassination missions. An example is the club-like instrument known as the cosh or blackjack, employed by the U.S. Central Intelligence Agency (CIA), the East German Stasi, and others. Though intended to stun the victim with a blow to the head, a cosh could certainly cause fatal injury if wielded with enough force. In a situation where a metal detector or other device would have revealed the presence of a gun, and where the operative was likely to be at close quarters with his victim, a cosh might well have been the weapon of choice.

In the 1950s, the CIA provided agents with an assassination manual that, due to the Freedom of Information Act, is now available to the public. In discussing blunt weapons, the author shows obvious respect for these simple tools of the trade, although he notes they "require some anatomical knowledge for effective use," The main advantage of a common blunt instrument such as a hammer is its universal availability.

Knives, edge weapons, and pointed instruments. The CIA author was equally explicit in discussing ways to use edge weapons, a term encompassing not only knives, but also other sharp weapons. British special forces in World War II, for example, used the push dagger and the thrust weapon, both sharp instruments that are more like stakes or spikes than knives per se. Other British forces, serving as commandos in North Africa, employed a combination of knife and brass knuckles, by which the user could first stun the victim, then put the knife itself to work.

As with most assassination weapons, concealment is a key issue. Hence, many units responsible for special operations in World War II used thumb knives, which were so small they could only be gripped with the thumb and forefinger. Their size made them easy to hide in the user's clothing, or even in a closed hand. Also during the war, the British Special Operations Executive (SOE) designed an ingenious knife kit for the U.S. Office of Strategic Services (OSS), forerunner of the CIA. The kit, made to fold up and fit neatly in a pocket, contained a plethora of knives and sharp instruments, ranging from a tiny knife painted black (so as to be nonreflective) to a fierce-looking open-handled dagger. OSS never officially adopted the kit, but many of its agents took a liking to it, and acquired their own while undergoing training in Britain.

Miscellaneous and hybrid devices. There are also miscellaneous assassination devices that either combine aspects of the bludgeon and edge weapon, or use strangulation as a means of killing. A notorious example of the latter is the garrote, typically used when the killer is able to approach the victim unsuspected from the back. Consisting of two handles joined by a thin, strong wire a little longer than a man's shoulders, the garrote is a highly effective low-tech weapon. Some are even designed with blade-like edges to the wire so that they can double as saws if the user needs to escape from a jail cell.

Similar to the garrote is the device known as the Gigli saw. Named for Leonardo Gigli, a nineteenth-century Italian physician who used it in performing surgery, the Gigli consists of long thin tempered steel blades arranged in an oval shape, with finger rings at either end. Made to cut through bone, it could certainly be used as a killing instrument, though mercifully it is more well known as an escape device employed by British intelligence operatives.

An all-purpose device, combining aspects of both the bludgeon and the sharp instrument, was the Peskett close-combat weapon. Used in Allied special operations during World War II, the Peskett was a veritable warehouse of low-tech killing equipment. Its wrist strap and attaching ring were the only innocuous aspects of the Peskett, whose ring attached it to a combination of cosh, garrote, and dagger. The cosh was a heavy weighted ball at the far end. The garrote wire, which could be pulled from (and retracted to) a hole on the side, also had a smaller weighted ball, which the killer employed as a grip when garroting a victim. Close to the ring and strap was a button by which the user released a dagger.

Guns and other firing devices: clever concealment. The designs of various guns, firing mechanisms, and explosive devices are often so clever that many of them sound more like something from a James Bond movie than actual weapons used by CIA, KGB, and other real covert-operations organizations. In such an environment, something as exotic as the CIA "Dear Weapon," a 9-mm pistol used by the organization in Vietnam, seems perfectly ordinary. Also known as the "CIA zip gun," it was made to be dropped in a styrofoam box from a plane. The pistol could be assembled in a matter of seconds with the help of an extremely simple instruction sheet, printed on moisture-resistant paper using pictograms that required no knowledge of English. The weapon stored ammunition in its grip, and looked like a water pistolbut it fired real bullets.

The Stinger (not to be confused with the surface-to-air missile of the same nickname) was a .22-caliber pistol hidden in a toothpaste tube. Developed for CIA during the Cold War, it was one of several guns designed for concealment in innocuous-looking packages. The British SOE also designed .22 caliber pistols disguised as either cigarettes or cigars. Both had a string at the end the smoker would put in his mouth, at which point the agent pulled the string with his teeth, firing the pistol.

Although the Bulgarians used KGB help in Markov's case, they were also adept at designing assassination devices of their own. Bulgarian intelligence designed the keychain gun, which had two barrels and carried two .32 caliber bullets. The small sizeabout an inch wide and three inches longwas both an advantage and a disadvantage. On the negative side, the shortness of the barrel created a great deal of recoil, and the size of the weapon left little room for any muffling device that would reduce the loudness of the sound when fired. For this reason, the keychain gun was typically used only as a last resort. On the other hand, its size made it easy to conceal, and it was designed in such a way that the keychain gun could pass through airport metal detectors. Indeed, the keychain gun cannot be spoken of in the past tense: according to Interpol, Cold War versions or post-Cold War knockoffs continue to sell in eastern Europe for as little as $20. After the September 11, 2001, terrorist attacks, United States aviation authorities warned airport screeners to look for keychain pistols.

Guns have also been concealed as flashlights, pipes, pencils, and any number of other ordinary-looking devices. A celebrated example was the lipstick pistol, or "kiss of death." Created by KGB for its female agents (or for male agents operating as homosexuals, or "ravens"), this weapon contained a 4.5-mm single-shot pistol encased in rubber and disguised as a tube of lipstick. To fire it, the user twisted its knurled ring a quarter-turn.

Devices for firing poison gas. Innocent-looking everyday objects provide an effective cover for assassination equipment of all typesnot just pistols, but devices for firing poison gas as well. The KGB, which developed (or arranged for the development of) the poison pens described earlier, was especially talented in this area. At different times, KGB agents used wallets concealing gas-firing cartridges, as well as variations on the umbrella that killed Markov. One tool was made to look like a blind person's cane. White tape concealed a triggering mechanism, but when the tape was removed, the userwho of course was a KGB operative with perfect visioncould fire poison gas from the cane's handle.

The KGB used a cigarette case to hide a poison-pellet gun. Once the pack was opened, it would fire hollow-point weapons containing poison gas. Another such weapon concealed a gas-firing device that had to be removed before using. In 1954, KGB sent Nikolai Khokhlov to assassinate dissident Georgi Okolovich in West Germany using a cigarette-pack poison weapon. Khokhlov, however, had secretly converted to Christianity, and renounced his profession. Therefore he warned Okolovich about the plot and defected to the West, subsequently revealing information about the cigarette-case weapons.

FURTHER READING:

BOOKS:

Irvin, Victor D. Political Assassination: The Strategic Precision Weapon of Choice. Carlisle Barracks, PA: U.S. Army War College, 2002.

Melton, H. Keith. The Ultimate Spy Book. New York: DK Publishing, 1996.

Minnery, John. CIA Catalog of Clandestine Weapons, Tools, and Gadgets. Boulder, CO: Paladin Press, 1990.

ELECTRONIC:

Doyle, Kate, and Peter Kornbluh. CIA and Assassinations: The Guatemala 1954 Documents. George Washington University. <http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB4/> (January 30, 2003).

International Spy Museum. <http://www.spymuseum.org> (January 31, 2003).

SEE ALSO

Assassination
Biochemical Assassination Weapons
Knives

Assassination Weapons, Mechanical

views updated May 23 2018

Assassination Weapons, Mechanical

The deliberate murder of a political leader, figurehead or other important person can be accomplished using the variety of weapons. Some means of assassination involve biological agents. Others use the brute mechanical force of guns, knives, and other hardware.

In the aftermath of an assassination, forensic science can be valuable in establishing the nature of the weapon used. For example, the trauma inflicted by a bullet and the chemical traces left by the residue are easily distinguished from a knife wound and its effects, such as the scouring of bone by the knife blade.

The various analytical forensic analysis techniques and skills of the forensic investigator can be used to ferret out the details of the assassination, such as the type of bullet used and the firearm that the bullet came from.

A forensic investigator can also benefit from knowledge of the operative principles of the various mechanical means of assassination. To varying degrees, all of these use the mechanical principles of force, pressure, and momentum, which are related through various ratios involving the fundamental physical interactions of mass, length, and time. Additionally, several are variations on the three classic "simple machines" of classical mechanics: the inclined plane (knife), the lever (the firing mechanism of a pistol), and the hydraulic press (some types of firing devices other than pistols).

Firearms also employ chemical properties. The gunpowder in a bullet undergoes a chemical, rather than a merely physical change. A physical change, such as the freezing of water, is reversible, but once gunpowder has chemically been altered by the addition of heat and the process of combustion brought about by interaction with oxygen, it turns into fire, smoke, and ashand a fraction of it becomes energysuch that it can never become gunpowder again.

Mechanical firing devices can also be a means of deploying a poison. A classic example is the poison pen, most effectively employed by the Soviet KGB. Disguised as an ordinary writing pen, one such device fired hydrocyanic acid in the form of gas. Another KGB pen used as a weapon fired pellets of ricin , a poison long favored by agents in the assassination squad known as SMERSH.

SMERSH used variations on this technique to eliminate several Bulgarian dissidents living abroad in the 1970s. The most famous example of this occurred in London, where SMERSH caught up with journalist Georgi Markov in September 1978. As an unsuspecting Markov stood waiting in a crowd for a bus at Waterloo Bridge, a man walked past him and jabbed him in the thigh with the pointed end of his umbrella. Within a few days, Markov was dead. The man with the umbrella was a SMERSH assassin, and the pointed tip of his umbrella had fired a platinum pellet containing ricin. So clever was this method of murder that it took some time before Western intelligence operatives realized what had happened, and arranged for Markov's body to be exhumed. Only then did they discover the pellet.

In this and other such cases, a biochemical agent actually caused death, yet the method of delivery was mechanical. In the same way, poison that passes through a syringe (a hydraulic pump) into the victim's body is a biochemical weapon delivered by mechanical means. By contrast, when the Aum Shinrikyo cult employed ricin to kill 12 commuters, and injure thousands more, in a Tokyo subway in 1995, they used it in the form of gasan almost purely biochemical technique. Victims inhaled the gas, which went to work immediately on their systems.

More conventional mechanical assassination weapons include bludgeons; knives and other sharp objects; guns and other firing devices; and miscellaneous weapons. An encyclopedic treatment of such weapons would fill an entire book, especially where guns are concerned. Therefore, the focus here is confined to weapons noted for their clever design or means of concealment that were developed by and for covert action organizations or similar groups. Even then, it is possible only to touch on a few notable examples.

Bludgeons and blunt instruments are used to deliver a blow when the victim and assassin are very close together. Forensically, the injury would be evident as a fractured skull or other signs of blows to other parts of the body.

Another mechanical weapon is a knife, edge weapon, or pointed instrument. All can deliver a cut or slash or sever a vital artery. Such assassination technology can be quite sophisticated. British special forces in World War II, for example, used the push dagger and the thrust weapon, both sharp instruments that are more like stakes or spikes than knives. Other British forces, serving as commandos in North Africa, employed a combination of knife and brass knuckles, by which the user could first stun the victim before using the knife.

As with most assassination weapons, concealment is a key issue. Hence, many units responsible for special operations in World War II used thumb knives, which were so small they could only be gripped with the thumb and forefinger. Their size made them easy to hide in the user's clothing, or even in a closed hand. Also during the war, the British Special Operations Executive (SOE) designed an ingenious knife kit for the U.S. Office of Strategic Services (OSS), the forerunner of CIA. The kit, made to fold up and fit neatly in a pocket, contained a plethora of knives and sharp instruments, ranging from a tiny knife painted a nonreflective black to a fierce-looking open-handled dagger.

There are also miscellaneous assassination devices that either combine aspects of the bludgeon and edge weapon, or use strangulation as a means of killing. A notorious example of the latter is the garrote, typically used when the killer is able to approach the victim unexpectedly from the back. Consisting of two handles joined by a thin, strong wire a little longer than a man's shoulders, the garrote is a highly effective low-tech weapon. Again, a pattern of injury that is produced that is distinctive to the instrument used. This can aid a forensic investigator in identifying the weapon utilized.

see also Assassination weapons, biochemical; Kennedy assassination; Lincoln exhumation; Ricin; Sarin gas.

More From encyclopedia.com