Environmental Regulation

views updated

ENVIRONMENTAL REGULATION

The regulation of human interactions with the environment has taken shape in various political institutions, policies, and market mechanisms that have evolved over time according to changes in social, cultural, and technological conditions. Forms of environmental regulation differ among nations and continue to emerge on the international level as industrialization and globalization create transboundary issues.

From the liberal or socialist perspective, in which the state is understood as a legitimate extension of the community, environmental regulation is regarded as a state activity representing effective public administration. But the conservative or libertarian perspective, in which the state should intervene as little as possible in the lives of its citizens, holds that market mechanisms or private agencies can provide environmental benefits more effectively. The complexity of environmental regulatory efforts also arises from questions about the proper role of scientific knowledge and various mechanisms for handling scientific uncertainty. Environmental regulation is a complex interdisciplinary effort involving ethical principles, political interests, scientific knowledge, and technological capacities. This broad scope of considerations ensures that several worldviews, with their attendant values and recommendations, will interact in regulatory efforts.

Environmental Regulation in the United States

The history of U.S. environmental and natural resource regulation can be categorized into three phases. The first phase, lasting roughly from 1780 to 1880, saw the evolution of legislation that promoted the settlement of the West and the extraction and use of its natural resources (Nelson 1995). Defining laws of this period are the General Land Ordinances of 1785 and 1787, the Homestead Act of 1862, the Mineral Lands Act of 1866, and the Timber Culture Act of 1873.

The success of western expansion spurred a second phase of environmental regulations. Generally termed the conservation movement, this period lasted from roughly the 1880s to the early 1960s. Policies of this period shifted the government's role from simply disposing of public lands to managing them. This management was informed by a philosophy of wise use, which held that resources should be managed for the greatest good, for the greatest number, for the longest time. This philosophy was enacted by a rising scientific elite, including Gifford Pinchot (1865–1946) and John Wesley Powell (1834–1902), who argued that the scientific management of natural resources must guide economic development in order to accomplish sustained yield and maximum efficiency. This placed the conservationists in conflict with John Muir (1838–1914) and other preservationists, who sought to maintain environments in their natural state (Caulfield 1989). The second phase witnessed the creation of the national park and national forest systems (for example, Yellowstone National Park in 1872; and the Organic Act [Forest Management Act] in 1897). The 1964 Wilderness Act, which sought to preserve pristine wilderness "untrammeled by man, where man himself is a visitor who does not remain," represents the culmination of this era.

The third phase marks the beginning of modern environmentalism, and received its greatest impetus from consciousness-raising works such as Rachel Carson's Silent Spring (1962) and Stewart Udall's (b. 1920) Quiet Crisis (1963). These books along with social changes wrought by modernizing technologies, industrialization, and urbanization triggered increased awareness of environmental problems and focused environmental policies on the regulation of air and water pollution, toxic chemicals, solid waste, and other impacts of the growing industries fueled by advances in science and technology. A later concern developed over global issues such as biodiversity and climate change. The modern environmental movement initiated an expanded role for the federal government in environmental regulation, which is especially evident in the major pieces of legislation passed in the 1970s: the National Environmental Policy Act in 1969; the creation of the Environmental Protection Agency (EPA) in 1970; Clean Air Act amendments in 1970 and 1977; the Clean Water Act in 1972 and amended in 1977; the Endangered Species Act in 1973; and the Toxic Substances Control Act in 1976.

By the end of the 1970s, federal and state governments had greatly expanded their environmental roles from public lands management to public health, industrial health and safety, agricultural development, and urban planning. The EPA took charge of a number of federal environmental responsibilities. Although independent of other federal agencies, the EPA is still a part of the executive branch and reports to the president. It operates within a context of other major federal agencies, including those housed under the Department of the Interior (DOI) (such as Fish and Wildlife Service, National Park Service, Bureau of Land Management, and Bureau of Reclamation) as well as the Department of Agriculture and the National Marine Fisheries Service. An enormous amount of regulatory activity continued to occur at the regional, state, and local levels. Governmental entities at every level have their own environmental regulations, constrained by the fact that they cannot defeat the purpose of federal regulations.

The 1980s, during the Ronald Reagan and George
H. W. Bush presidencies, witnessed some weakening of environmental regulations, as an extension of more general deregulation policies that argued the inefficiencies of bureaucratic or command-and-control mechanisms as well as the need to perform cost-benefit analyses on regulatory activities. These changes were matched by the creation and strengthening of many nongovernmental organizations (NGOs) and other environmental activist and lobbying groups.

The Bill Clinton era (1992–2000) witnessed a modest revival of federal regulatory efforts. The George W. Bush presidency once again sought the de-federalization of environmental regulation as well as the more active extraction of energy resources on federal lands.

Other Nations and International Efforts

Other countries institutionalized environmental regulation by creating ministries of the environment (for example, Great Britain), or placed environmental responsibilities in existing ministries (such as West Germany). Eventually most European countries established environmental ministries, even though other ministries (such as agriculture, energy, or urban planning) continued to manage some environmental regulatory activities. Austria, France, Germany, Ireland, Italy, Sweden, and the United Kingdom eventually created more or less independent environmental regulatory agencies. At the European Union (EU) level, the European Environment Agency (EEA) is charged with generating and disseminating environmental information.

In Latin America, the process of introducing environmental regulation followed the European model. Until the 1990s, in many Central and South American countries there existed various national environmental commissions charged with coordinating different environmental protection activities. The 1992 Rio Conference (United Nations Conference on Environment and Development Earth Summit) provided an important impulse for administrative reforms in Latin America related to environmental protection and led to the creation of ministries of the environment throughout the Spanish- and Portuguese-speaking countries of the Americas.

As globalization continues, an increasing number of environmental problems present transboundary issues. Global climate change, invasive species and biodiversity, water use, and air and water pollution are just some of the problems that raise environmental regulation into the realm of international law and policy. The United Nations has played a leading role in two of the more prominent instances of international collaboration around environmental issues. First, the UN Environment Programme established the international legal framework known as the Vienna Convention on the Protection of the Ozone Layer in 1985. This led to the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987, which required industrialized countries to reduce their consumption of chemicals that harm the ozone layer. Second the United Nations Framework Convention on Climate Change (Framework) established in 1992 provides a forum for governments to gather and exchange information and adapt to the effects of climate change. An international meeting in Kyoto, Japan, held under the Framework, produced a document (the 1997 Kyoto Protocol) that established binding limitations on greenhouse gas emissions by developed nations. Russia's ratification of the protocol in 2004 fulfilled the participation requirements for developed nations, thus allowing the treaty to become effective.

However such international agreements generally just set basic guidelines that require domestic legislation. This is usually difficult to achieve, and in the case of the Kyoto protocol, monitoring compliance is complex and there is no international enforcement authority. Furthermore international negotiations usually involve several governmental bodies, such as agencies, ministries or departments. For example, the State Department (not the EPA) controls U.S. involvement in international climate negotiations. The proliferation of bureaucratic agencies can create political gridlock.

Types of Environmental Regulation

Environmental regulation is plagued by two intrinsic challenges. First, because many environmental regulations involve the protection of public (common) goods, they often conflict with individual rights (especially property rights). Second, environmental problems often occur over long time periods and wide physical areas, whereas most individuals involved in regulatory processes have short-range, narrow interests, especially concerning economic growth. For both reasons, traditional environmental regulations usually entailed the implementation of strict controls on the otherwise unrestrained expression of personal and economic interests in the free market. As John Baden and Richard Stroup point out:

The dawn of the environmental movement coincided with an increased skepticism of private property rights and the market. Many citizen activists blamed self-interest and the institutions that permit its expression for our environmental and natural resource crises. From there it was a short step to the conclusion that management by professional public "servants," or bureaucrats, would significantly ameliorate the problems identified in the celebrations accompanying Earth Day 1970. (Baden and Stroup 1981, p. v)

What followed during the 1970s was a command-and-control approach to environmental regulation, wherein the government set strict legal limits and enforced sanctions against violators.

Although this top-down and sometimes heavy-handed approach resulted in important successes, it also revealed a crucial element of regulatory practices: There are governmental failures just as there are market failures. Several reasons for governmental failures exist. Bureaucrats, like all people, are self-interested, and when governmental structures are not designed to link authority with responsibility for program outcomes, "decision makers have few incentives to consider the full social costs of their actions" (Baden and Stroup 1981, p. v). Furthermore decision makers have only a limited capacity to comprehend complex social and environmental interactions, which can limit their ability to make wise regulatory decisions.

One response has been to improve the structure of government, but another reaction has been to improve the structure of markets by implementing what Terry Anderson and Donald Leal term Free Market Environmentalism (1991). The underlying philosophy of this regulatory approach is that markets and environmental concerns can be made compatible by internalizing costs and establishing the proper incentives. This perspective also challenges the common assumption that environmental degradation is inherently linked to economic growth. It should also be noted that the relationship between environmental regulations and job loss or economic downturns is controversial, and no such correlation may exist (Goodstein 1999).

Anderson and Leal claim that the approach of free market environmentalism is founded on a core assumption of human nature: Humans are self-interested. They write, "Instead of intentions, good resource stewardship depends on how well social institutions harness selfinterest through individual incentives" (Anderson and Leal 1991, p. 4). Examples of utilizing market mechanisms for environmental regulations include green taxes, marketable emissions permits (for example, cap-and-trade systems), and the elimination of harmful government subsidies.

Command-and-control and free market regulatory strategies are not incompatible and can often be used in conjunction to achieve desired environmental outcomes. Free market mechanisms obviously also have social dimensions insofar as they influence levels of public service, consumer rights, minority interests, and more. Social regulations likewise have economic implications in that they provide a framework within which economic activities can take place. Public or private institutions may advocate for both types of regulation. At the public level, environmental agencies such as the EPA are often subject to enormous political pressures that can complicate their mission and even compromise their integrity (Landy, Roberts, and Thomas 1994).

Many environmental regulations involve statutes, which often include a citizen suit provision or other appeals procedures that allow citizens to challenge an agency's action (or inaction) when it appears to be out of compliance with the law. In the United States, suit can also be filed under the Administrative Procedures Act, which is another mechanism for holding federal employees and agencies accountable for properly exercising their authority. Many environmental statutes specify the basis on which decisions must be made. In the United States, public input at the scoping stage is usually mandatory, and notice and comment periods through the Federal Register are always required. Some statutes require protection of the environment, while others focus primarily on human health. Some mandate cost-benefit analysis, while others call for decisions based on the best available science alone, with no consideration given to economic cost.

Science and Environmental Regulation

For all environmental problems, a certain amount of scientific understanding of natural systems and their interaction with human social systems is a necessary component of any regulatory action. This partially explains the preeminent importance of scientific advice in the crafting of environmental regulation or science for policy. The role of scientific expert knowledge is independent of the type of administrative process. Establishing an independent agency raises further questions of democratic legitimacy and accountability. This is true especially in relation to the problems of scientific advisers turning into policy makers and policy makers delaying action while continuing to fund more scientific research (Jasanoff 1990).

In theory, the process of environmental regulation depends on two factors: the definition (by democratically legitimized institutions) of the public goods to be protected, including the degree and costs of protection; and the scientific knowledge necessary to determine how an action may impact those public goods. But it is erroneous to assume that these two factors alone define the regulatory framework. Also, in this view, moral and political considerations play a role only during the definition of regulatory aims; and the justification for adopting certain regulations is based solely on expert knowledge. However, as regulatory practice demonstrates, this position has to be complemented by other considerations, because the facts and values components of environmental regulations are engaged in an iterative dialectic.

The different regulatory approaches created to safeguard public health and the environment from the effects of a large number of technological applications have stimulated new kinds of scientific activity, among them environmental impact and risk assessment. The scientific evaluation of risks and impacts has spawned various types of cost-benefit and risk-cost-benefit analyses (National Research Council 1996). These management tools permit a limited comparison of the environmental and economical effects of various alternative technologies and production processes, as well as different regulatory approaches. They can also be used to analyze risk-tradeoffs, where the regulation itself may lead to the emergence of other risks and negative impacts.

The Role of Science

Such predictive models are often limited by lack of data and the impossibility of modeling complex, higher-order interactions. For example, identifying the environmental impacts and risks presented by a chemical substance is made difficult by long term, cumulative interactions (sometimes called the cocktail effect) that cannot be mimicked in a laboratory setting. In some cases, the environmental degradation may be patent but establishing the pertinent causal relations may nevertheless be extremely difficult. In the case of global climate change, this type of persistent uncertainty has tended to sidetrack political discussion and hamper the process of producing alternatives for decision makers and stakeholders. So, even though scientific understanding is indispensable, it is not the only ingredient in formulating and implementing sound environmental regulations. There are very few instances where science provides enough clarification to clear away politically charged, open-ended environmental problems. This has led some policy analysts such as Daniel Sarewitz (2004) to suggest that the values bases of disputes must be fully articulated and adjudicated before science can play an effective role in resolving environmental problems.

Scientific investigation is certainly crucial to crafting wise regulations, but also presents several challenges (Cranor 1993). First is the issue of burden of proof. Generating all the necessary scientific information can be a time and resource intensive task. This can delay any decision, which in turn means that a harmful activity continues unregulated. In such case, putting the burden of proof on those who try to demonstrate that an environmental impact indeed exists tends to favor the environmentally harmful activity instead of the protection of the environment. This situation has led those social groups most concerned about environmental protection to demand, at least for certain technologies, the inversion of the burden of proof (that is, the need for demonstrating the absence of important environmental impacts).

A related problem concerns the standards of proof, which determine if a technological activity is harmful for the environment or human health. A number of factors can make environmental risk and impact analysis a very complex activity. If standards are rigorous, regulatory action may be excessively delayed. The debate on global warming and its relation to the emission of greenhouse gases provides a good example. In many cases it may be more effective for the protection of the environment to synthesize all available information from different sources and make decisions based on cumulative weight instead of trying to identify and quantify with precision any single environmental impact or risk. This highlights the fact that the choice of a standard of proof is as much a political and ethical dilemma as a scientific question (Shrader-Frechette 1994).

A third problem is the indeterminacy that is inherent in any environmental impact or risk assessment (Wynne 1992). Indeterminacy can only be reduced through methodological choices (for instance, about different available mathematical models that establish the relationship between the presence of a substance and environmental effects). Any choice that affects the scientific methodology leads either to an increase of false positives (reaching the conclusion that the activity is harmful for the environment even though it is not) or of false negatives (reaching the conclusion that the activity is not harmful even though it is). In other words, any methodological choice has important regulatory consequences. This leads inevitably to the conclusion that scientists must take into account the consequences of the methodologies they choose, while society and decision makers must be aware of the uncertainties inherent in scientific knowledge about impacts and risks (Funtowicz and Ravetz 1992).

Since the 1990s, an important field in the debates on environmental regulation has focused on the so-called precautionary principle, proposed by some environmentalists as a means to face those problems posed by scientific uncertainties regarding environmental impacts (Raffensperger and Tickner 1999). A number of agreements and international treaties have adopted this principle. However, so far no commonly accepted definition exists. One of the more popular definitions is the one to be found in the 1992 Rio Declaration on Environment and Development: "Where there are threats of serious irreversible damage, lacks of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation." Besides the discussion about its definition, there also exists a debate about when to invoke the precautionary principle, about its general meaning as well as its scope.

A Typology of Worldviews

John Dryzek and James Lester (1989) have created a typology of environmental worldviews that serves as one way of organizing the variety of problem definitions and prescriptions for regulatory policies and institutions. Six worldviews are distinguished according to their particular blend of two different dimensions: the locus of value (individuals, anthropocentric communities, or biocentric communities) and the locus of solutions (centralized or decentralized). Each worldview thus supports different policy recommendations.

The first three worldviews all agree that solutions must be centralized. First are the Hobbesians and structural reformers, who believe in modern liberal individualism, but argue that it must be checked by a certain degree of political centralization. This is still the dominant worldview, and most of its adherents are moderates, convinced that "more laws to regulate polluters, more funds for enforcement, and minor structural reforms" will suffice (Dryzek and Lester 1989, p. 318). Second are the guardians, who still value centralization, but argue that an elite group of scientific and technical experts should monopolize power. Examples include Alvin Weinberg's proposal to create a permanent priesthood of nuclear technologists to oversee energy systems and William Ophul's class of ecological mandarins. The third group of centralizers is the reform ecologists, who argue that ecological values must be represented in the highest echelons of government. Reform ecologists (for example, Eugene Odum, Paul Ehrlich, and Lester Brown) are usually less concerned with the structure of political and economic institutions than with their scientifically defended ecocentric values.

The other three worldviews find the locus of solutions in decentralization. First are the free market conservatives, who, like Anderson and Leal, believe that government intervention in environmental problems has gone too far and self-regulating market systems can work much better. Second are the social ecologists, who base their decentralized vision not on the market but rather on the ideal of a cooperative community. Murray Bookchin represents the main stem of this worldview, but it also applies to ecofeminists and other groups that call for classless, stateless, and decentralized societies far removed from capitalism. Finally the deep ecologists take little interest in human communities (like the reform ecologists) and stress the importance of the realization of the self within the greater Self of the biotic community. Although it can verge on misanthropic antipolitics, deep ecology is also represented by such luminaries as Henry David Thoreau and Aldo Leopold and other insightful theorists such as Arne Naess, Bill Devall, and George Sessions.

Although not without its gaps and ambiguities, Dryzek and Lester's typology can be used as a heuristic to organize the complex and contested nature of environmental regulations. It captures the various roles that science can play (for instance, informing modest reforms or monopolizing entire discourses) according to the dominant worldview in the particular topic. It distinguishes between various forms of centralized and decentralized regulations. The typology also hints at the alternative futures that can occur as worldviews rise and fall from social and political dominance, thus leading to different regulatory mechanisms and philosophies. Finally it highlights the constructed nature of reality as participants bring different worldviews to the political agenda, which in turn opens up the dialogue over which values ought to be represented and which regulatory mechanisms can best deliver the valued outcomes.

JOSÉ LUIS LUJÁN
ADAM BRIGGLE

SEE ALSO Environmental Ethics;National Parks;Pollution; Regulation;Science, Technology, and Law;United Nations Environmental Program;Waste.

BIBLIOGRAPHY

Anderson, Terry, and Donald Leal. (1991). Free Market Environmentalism. San Francisco: Westview Press. The first comprehensive treatment of the idea that free markets can achieve environmental goals.

Anderson, Terry, and Donald Leal. (1997). Enviro-Capitalists: Doing Good While Doing Well. Lanham, MD: Rowman & Littlefield. An updated version of the central idea that free markets and environmentalism are not fundamentally antagonistic.

Baden, John, and Richard Stroup. (1981). Bureaucracy vs. Environment: The Environmental Costs of Bureaucratic Governance. Ann Arbor: University of Michigan Press. Outlines the failures of bureaucratic solutions to environmental problems and offers suggestions for reforms based on aligning incentives with valued outcomes.

Brunner, Ron; Toddi A. Steelman; Lindy Coe-Juell; et al. (2005). Adaptive Governance: Integrating Natural Resource Science, Decision Making and Policy. New York: Columbia University Press. Focuses on community-based initiatives to overcome the gridlock that can ensue from scientific management.

Caulfield, Henry. (1989). "The Conservation and Environmental Movements: An Historical Analysis." In Environmental Politics and Policy: Theories and Evidence, ed. James Lester. London: Duke University Press. Utilizes elite theory to explain the evolution of political movements and provides a historical analysis of these two movements.

Carson, Rachel. (1962). Silent Spring. Boston: Houghton Mifflin.

Cranor, Carl. (1993). Regulating Toxic Substances: A Philosophy of Science and the Law. New York: Oxford University Press. A detailed analysis of the political dimension of the epistemological characteristics of scientific research on impacts and risks. Its main focus is U.S. regulatory agencies.

Davis, Charles, and James Lester. (1989). "Federalism and Environmental Policy." In Environmental Politics and Policy: Theories and Evidence, ed. James Lester. London: Duke University Press. Contends that a state's ability to implement environmental programs depends on its institutional capacity and its degree of dependence on federal grants.

Dryzek, John, and James Lester. (1989). "Alternative Views of the Environmental Problematic." In Environmental Politics and Policy: Theories and Evidence, ed. James Lester. London: Duke University Press. Creates a typology of world views based on locus of value and locus of solutions.

Funtowicz, Silvio O., and Jerome R. Ravetz. (1992). "Three Types of Risk Assessment and the Emergence of Post-Normal Science." In Social Theories of Risk, ed. Sheldon Krimsky and Dominic Golding. West Port, CT: Praeger. In order to manage the uncertainty inherent in environmental risk assessment, especially in the case of global environmental risks, the authors propose the introduction of a methodologically diverse science, the so-called post-normal science, based on an extended peer community.

Goodstein, Eban. (1999). The Trade-Off Myth: Fact and Fiction about Jobs and the Environment. Washington, DC: Island Press. Argues that there is no jobs-environment trade-off.

Jasanoff, Sheila. (1990). The Fifth Branch: Science Advisers as Policymakers. Cambridge, MA: Harvard University Press. An analysis of the policy role of science advisers in the United States, especially in the case of agencies such as the EPA or the Food and Drug Administration (FDA).

Landy, Marc; Marc Roberts; and Stephen Thomas. (1994). The Environmental Protection Agency: Asking the Wrong Questions: From Nixon to Clinton. Oxford: Oxford University Press.

Lash, Scott; Bronislaw Szerszynski; and Brian Wynne. (1996). Risk, Environment & Modernity: Towards a New Ecology. London: Sage Publications. Includes several articles of European scholars on the concept of risk society.

National Research Council. (1996). Understanding Risk: Informing Decisions in a Democratic Society. Washington, DC: National Academy Press. An analysis of the characterization of risk that defends a very broad definition of this concept.

Nelson, Robert. (1995). Public Lands and Private Rights: The Failures of Scientific Management. Lanham, MD: Rowman & Littlefield. Provides historical context for U.S. public land management debates. The first chapter examines the unexpected consequences of early public land laws.

Raffensperger, Carolyn, and Joel Tickner, eds. (1999). Protecting Public Health & the Environment: Implementing the Precautionary Principle. Washington, DC: Island Press. Includes a number of analyses of different aspects of the precautionary principle.

Sarewitz, Daniel. (2004). "How Science Makes Environmental Controversies Worse." Environmental Science and Policy 7(5): 385–403. Explains why environmental problems tend to become scientized, and offers some recommendations for improved decision making.

Shrader-Frechette, Kristin. (1994). Ethics of Scientific Research. Lanham, MD: Rowman & Littlefield. A study of ethical science-related problems, with special attention to the analysis of scientific knowledge in the area of environmental regulation.

Tesh, Sylvia Noble. (2000). Uncertain Hazards: Environmental Activists and Scientific Proof. Ithaca, NY: Cornell University Press. Shows the ways in which pressure exerted by activist groups leads to changes in scientific research on impacts and risks.

Udall, Stewart. (1963). Quiet Crisis. New York: Holt, Rinehart, and Winston.

Wynne, Brian. (1992). "Uncertainty and Environmental Learning: Reconceiving Science and Policy in the Preventive Paradigm." In Global Environmental Change 2(2): 111–127. An analysis of the indeterminacy in environmental risk assessment, as well as its consequences for environmental policy.

About this article

Environmental Regulation

Updated About encyclopedia.com content Print Article

NEARBY TERMS

Environmental Regulation