Boron (revised)
BORON (REVISED)
Note: This article, originally published in 1998, was updated in 2006 for the eBook edition.
Overview
Boron is the first element in Group 13 (IIIA) of the periodic table. The periodic table is a chart that shows how the chemical elements are related to each other. The elements in this group are usually referred to as the aluminum family.
Boron is quite different from other members of the family. One difference is that boron is not a metal. All other members of the family (aluminum, gallium, indium, and thallium) are metals.
Compounds of boron have been used for centuries. Borax, a boron compound, has long been used to make glass and glazes. The element itself was not identified until 1808.
The most important use of boron is still in glass manufacture. Agriculture, fire retardants, and soaps and detergents rely on boron compounds.
SYMBOL
B
ATOMIC NUMBER
5
ATOMIC MASS
10.811
FAMILY
Group 13 (IIIA)
PRONUNCIATION
BOR-on
Discovery and naming
The first mention of boron compounds is found in a book by Persian alchemist Rhazes (c. 865-c. 925). Alchemists studied the nature of matter before modern chemistry was born. Rhazes classified minerals into six classes, one of which was the boraces, which included borax.
Borax was widely used by crafts people. It reduces the melting point of materials used to make glass. It was also used to melt the ores of metals and to isolate the metals from those ores.
In 1808, English chemist Humphry Davy (1778-1829) had just learned how to isolate the most active metals, such as sodium and potassium. He was also working on a method to remove boron from its compounds. (See sidebar on Davy in the calcium entry.)
News of Davy's success had traveled to France, where emperor Napoleon Bonaparte (1769-1821) grew concerned about the scientific reputation of his country. He ordered larger and better equipment built for his scientists. He wanted them to surpass Davy in his work on metals. This equipment was designed especially for two French chemists, Louis Jacques Thênard (1777-1857) and Joseph Louis Gay-Lussac (1778-1850).
Thênard and Gay-Lussac found a new way to separate boron from its compounds. They heated boracic acid (also known as boric acid, H3BO3) with potassium metal to produce impure boron. Thênard and Gay-Lussac were given credit for discovering the new element. In 1892, French chemist Henri Moissan (1852-1907) produced boron that was 98 percent pure.
The names borax and boracic acid probably originated as far back as the time of Rhazes as buraq (in Arabic) or burah (in Persian).
Physical properties
One of the unusual properties of boron is the many physical forms, called allotropes, in which it occurs. Allotropes are forms of an element with different physical and chemical properties. One form of boron consists of clear red crystals with a density of 2.46 grams per cubic centimeter. A second form consists of black crystals with a metallic appearance and a density of 2.31 grams per cubic centimeter. Boron can also occur as a brown powder with no crystalline structure. The density of this powder is 2.350 grams per cubic centimeter.
All forms of boron have very high melting points, from 2,200 to 2,300°C (4,000 to 4,200°F).
One property of special importance is boron's ability to absorb neutrons. Neutrons are subatomic particles with no charge that occur in the nucleus of nearly all atoms. Boron atoms are able to absorb a large number of neutrons. This makes boron useful in the control rods of nuclear reactors.
A nuclear reactor is a device for generating energy from nuclear fission reactions. Nuclear fission is the process in which large atoms are split, releasing large amounts of energy and smaller atoms. In a nuclear reactor, it is essential that just the right number of neutrons are present. Too many neutrons can cause a fission reaction to get out of control. Too few neutrons and a fission reaction stops.
Control rods are long tubes packed with boron (or some other element). The rods can be raised and lowered in the reactor. As the rods are lowered into the core, the boron absorbs neutrons, slowing the reaction.
Chemical properties
Boron combines with oxygen in the air to form boron trioxide (B 2O3). Boron trioxide forms a thin film on the surface that prevents further reaction with oxygen.
Boron is not soluble in water. It normally does not react with acids. In powder form, it reacts with hot nitric acid (HNO3) and hot sulfuric acid (H2SO4). It also dissolves in molten (melted) metals.
Occurrence in nature
The abundance of boron in the Earth's crust is estimated to be about 10 parts per million. That places it in about the middle among the elements in terms of their abundance in the earth.
Boron never occurs as a free element but always as a compound. The most common minerals of boron are borax, or sodium borate (Na2B4O7); kernite (another form of sodium borate); colemanite, or calcium borate (Ca2B6O11); and ulexite, or sodium calcium borate (NaCaB5O9). These minerals usually occur as white crystalline deposits in desert areas. The two largest world producers of boron compounds are Turkey and the United States. Smaller amounts come from Argentina and China. Nearly all of the boron in the United States comes from three California counties: Kern, San Bernadino, and Inyo.
The good and bad of radiation
R adiation can kill living cells. Light, X rays, radio waves, and microwaves are all forms of radiant energy. These forms of radiation differ from each other in the amount of energy they carry with them. X rays carry a great deal of energy; light waves, less energy; and radio waves, very little energy.
The bad news about high-energy radiation is that it can kill healthy cells. A person exposed to high levels of X rays will become ill and may die. Because the X rays kill so many cells, the person's body cannot survive. Essential body functions stop, and death occurs.
The good news is that high-energy radiation can be used to kill cancer cells. Cancer cells are abnormal cells that reproduce faster than normal tissue. The rapidly dividing cells form tumors, crowd organs, and shut down some organ function. Radiation is one way to kill cancer cells.
The problem lies in killing only the cancer cells. The radiation has to be "targeted" at the cancer (bad) cells, and not the healthy (good) cells. Scientists think that using boron may be one way of achieving this goal. A new procedure called boron neutron capture therapy (BNCT) is one method for targeting cancer cells.
With BNCT, a person with cancer receives an injection of boron. The boron tends to go directly to cancer cells. The patient receives an injection of boron that deposits only in the cancer cells. Scientists currently do not know why boron favors cancer cells. But it does.
The patient's body is then bombarded with neutrons that pass through without harming health cells. They then collide with boron atoms. This causes boron to be converted into lithium atoms, alpha particles, and gamma rays. An alpha particle is a helium atom without electrons. Gamma radiation is very high-energy radiation that can kill cells.
The lithium atoms and alpha particles travel only a short distance. They do not leave the cancer cell but have enough energy to kill the cell. Since they do not leave the cell, they pose no threat to healthy cells nearby.
BNCT is not fully developed. But it holds great promise as a cancer treatment.
Isotopes
Two naturally occurring isotopes of boron exist: boron-10 and boron-11. Isotopes are two or more forms of an element. Isotopes differ from each other according to their mass number. The number written to the right of the element's name is the mass number. The mass number represents the number of protons plus neutrons in the nucleus of an atom of the element. The number of protons determines the element, but the number of neutrons in the atom of any one element can vary. Each variation is an isotope. Boron-10 is the isotope with high neutron-absorbing tendencies described earlier under "Physical properties."
Three radioactive isotopes of boron are known also. A radioactive isotope is one that breaks apart and gives off some form of radiation. Radioactive isotopes are produced when very small particles are fired at atoms. These particles stick in the atoms and make them radioactive.
None of the radioactive isotopes of boron have any important commercial uses.
Extraction
Boron is still produced by a method similar to that used by Thênard and Gay-Lussac. Boric oxide is heated with powdered magnesium or aluminum:
The element can also be obtained by passing an electric current through molten (melted) boron trichloride:
Uses
Boron is used to make certain types of alloys. An alloy is made by melting and mixing two or more metals. The mixture has properties different from those of the individual metals. The most important of these alloys commercially are used to make some of the strongest magnets known. The rare earth magnets, for example, are made from boron, iron , and neodymium. These magnets are used for microphones, magnetic switches, loudspeakers, headphones, particle accelerators, and many technical applications.
The use of boron in nuclear power plants was described above under "Physical properties."
Compounds
The most important of boron compounds is sodium borate (Na2B4O7), used in the manufacture of borosilicate glass, glass fiber insulation, and textile glass fiber. The addition of sodium borate to glass makes it easier to work while it is molten. The final glass is not attacked by acids or water, is very strong, and resists thermal shock. Resistance to thermal shock means the glass can be heated and cooled very quickly without breaking. The Pyrex glass used in kitchenware and chemistry laboratories is a form of borosilicate glass. High quality optical glass, like that used in telescopes, is also made from borosilicate glass.
Glass fiber insulation is also made from borosilicate glass by forcing it through narrow openings. The glass comes out as a thin fiber and is then spun into insulation. These fibers trap air. Since neither the borosilicate fibers nor air is a good conductor of heat, it makes excellent insulation. Much of the insulation used in private homes, office buildings, and other structures is made of borosilicate fibers.
Fibers made from borosilicate glass are also used in making cloth. Borosilicate fibers are blended with other synthetic fibers to make durable fabric for automobile seat covers and other long-wear applications.
Boron also forms important compounds with two other elements, carbon and nitrogen. Boron carbide (B4C) and boron nitride (BN) are important compounds because of their hardness. In fact, boron nitride may be the hardest substance known. Both compounds have very high melting points: 2,350°C (4,300°F) for boron carbide and more than 3,000°C (5,400°F) for boron nitride.
These properties make boron carbide and boron nitride useful as abrasives and refractories. An abrasive is a powdery material used to grind or polish other materials. A refractory material is one that can withstand very high temperatures by reflecting heat. Refractory materials line ovens to maintain high temperatures.
Studies suggest that a lack of boron may lead to arthritis and other disorders of the skeleton.
Boron carbide and boron nitride are used in high-speed tools, military aircraft and spacecraft, heat shields, and specialized heat-resistant fibers. They also are found in face powders, cream make-ups, and lipsticks.
Small amounts of boron compounds are also used to control the growth of weeds in agriculture, and as insecticides, fertilizers, and flame retardants. A flame retardant is a material that prevents another material from catching fire and burning with an open flame.
Health effects
The role of boron in human health is not well understood. There is growing evidence that very small amounts of boron may be required to maintain healthy bones. Studies suggest that a lack of boron may lead to arthritis and other disorders of the skeleton. Boron may also be necessary for healthy brain functions, such as memory and hand-eye coordination.
No specific recommendations have been made by health authorities. But some experts believe 1.5 to 3.0 milligrams of boron should be included in the daily diet. Most people get this much boron from fruits, green vegetables, nuts, and beans in their normal diet.
A normal daily intake of fruits, green vegetables, nuts, and beans give most people the 1.5 to 3.0 milligrams of boron that health experts suggest should be included in the daily diet.
Boron is also an essential trace mineral in plants. A trace mineral is an element needed in minute amounts for the good health of an organism. Boron is critical to production of certain essential plant proteins and to help plants extract water from the soil. Low levels of boron show up as yellowing, blackening, twisting, or crumpling of leaves.
Boron
Boron
Description
Boron is a trace mineral that has gained popularity in recent years due to claims that it can strengthen bones, build muscle mass, and boost brain activity. While such macrominerals as calcium, magnesium , and potassium have become household names because they make up over 98% of the body's mineral content, certain trace minerals are also considered essential in very tiny amounts to maintain health and ensure proper functioning of the body. They usually act as coenzymes, working as a team with proteins to facilitate important chemical reactions. While boron is considered essential for plants, it is not known if the mineral is necessary for humans. Evidence has been mounting in the last two decades, however, that suggests boron may be an important micronutrient.
Studies indicate that boron may contribute to the way that calcium, a vital building block of bone, and other minerals are processed by the body. Boron appears to increase the amount of calcium absorbed from food and lower the amount excreted by the body. These effects may help to keep bones strong. Boron may also improve mental functioning, strengthen the immune system, boost energy utilization, and affect cholesterol production. While the effects of a boron-free diet have not been observed in people, animal studies suggest that a lack of boron can be unhealthy. In one investigation, for example, a boron-deficient diet fed to animals seemed to increase the amount of calcium they lost. It also appeared to have a negative effect on bone development and energy utilization. It is not certain, however, that study results such as this confirm the nutritional importance of boron for human beings. As of 2000, research is still necessary to determine if boron can produce significant health benefits safely and effectively. The proper dosage of the mineral has not yet been established.
General use
While not extensively studied, boron has been touted as having a number of beneficial effects. Some people take it to help treat osteoporosis or arthritis and to alleviate menopausal symptoms. It has been reported to enhance mental activity, memory, and hand-eye coordination. Some body builders and athletes take boron supplements as a muscle-enhancing agent despite the fact that there is no evidence to support this use. Overall, boron appears to have the most potential as a possible bonebuilder and brain booster.
The effects of boron on bone strength were investigated in a small study of 12 postmenopausal women between the ages of 48 and 82, published in the FASEB Journal in 1987. The women had received a low-boron diet (containing about 0.25 mg a day of the mineral) for several months before being given daily boron supplements of 3 mg. Once the women increased their intake of boron, they were able to retain more bone-building minerals such as calcium and magnesium. This effect was greater in women who started out with low levels of magnesium. Boron supplements also significantly increased levels of estrogen and testosterone, especially in the magnesium-deficient group. The results of this study suggest that getting an adequate amount of boron, whether through dietary intake or boron supplements, may help to maintain strong bones by allowing the body to use calcium and other important minerals more efficiently.
Most of the research suggesting that boron may be helpful for arthritis is indirect and circumstantial. Early studies in sheep and chickens indicated that boron may be useful in helping to treat the disease. There is also an interesting relationship between the incidence of arthritis and boron intake in certain geographical locations. In parts of the world where boron intake is high (intake can range anywhere from 3–10 mg), usually as a result of high boron levels in the soil and water, the number of people who develop arthritis tends to be lower than in areas where people consume less of the mineral. Boron levels in the water and soil are usually highest in arid climates, such as the desert regions of the United States and South America, the Red Sea region of the Middle East, and parts of Australia. There are few human studies of boron in relation to arthritis, although one small investigation in people has suggested that boron may help to relieve symptoms of the disease.
While there is some evidence that boron may be helpful in the treatment of postmenopausal osteoporosis, the mineral does not appear to ease the symptoms associated with menopause . In a five-week study involving 46 menopausal women, about 50% of those who received boron supplements experienced more frequent and severe hot flashes (as well as night sweats) and generally had an increase in menopausal symptoms. Over a third of the women who received boron reported that the mineral made no difference at all in their symptoms. Boron had a beneficial effect in only 15% of the women who took it. These findings suggest that boron may actually aggravate menopausal symptoms more often than it alleviates them.
Researchers from the Grand Forks Human Nutrition Research Center, which is affiliated with the United States Department of Agriculture (USDA), investigated the role of boron in brain and psychological function in several studies involving humans and animals. In one study, increasing boron intake in rats receiving a boron-deficient diet seemed to increase mental activity. Studies conducted in people suggested that a lack of boron can decrease mental activity and have a negative effect on hand-eye coordination, the ability to concentrate, and short-term memory. These findings seem to indicate an important role for boron in keeping the brain fit.
The use of boron by body builders stems from its apparent ability to increase testosterone levels. Because testosterone is known to play an important role in the development of muscles, some weight lifters have taken boron supplements because they believe it will increase levels of male hormone and make them stronger. There is no evidence, however, that boron can increase muscle mass or athletic performance. Boron supplements are generally not considered effective as a muscle-enhancing agent.
Preparations
A recommended daily allowance (RDA) for boron has not been established. The estimated dosage of boron, which is available as an over-the-counter dietary supplement, is generally 3 mg a day. Even without taking supplements, most people get anywhere from 1–3 mg of boron through their diets . For this reason, some authorities suggest avoiding boron supplements altogether and eating foods known to contain the mineral. Good sources of boron include fruits, especially pears, apples, peaches, grapes, and raisins; leafy vegetables; peanuts and other nuts; and beans. Beer and wine also contain boron. Drinking water can be a good source of the mineral depending on geographical location. Getting too much of the mineral through food and drink is not considered a significant risk because boron is present only in very small amounts in plants and animals.
Precautions
Boron is not known to be harmful when taken in recommended dosages, though there are some precautions to consider. Boron appears to increase estrogen levels, especially in women receiving estrogen therapy. For this reason, women receiving hormone therapy should talk to their doctors before taking boron supplements. Combining the mineral with estrogen drugs may result in elevated and potentially unhealthy levels of female hormone. However, it is considered safe for women on estrogen therapy to eat boron-containing foods. In fact, many of the fruits and vegetables containing the mineral are believed to contribute to good health.
The long-term health risks associated with taking boron supplements are unknown.
Side effects
When taken in recommended dosages, boron has not been associated with any significant or bothersome side effects. At very high dosages, boron may cause nausea and vomiting, diarrhea , and headaches.
Interactions
Combining boron and estrogen-containing drugs may cause an undesirable increase in estrogen levels.
Resources
BOOKS
Sifton, David W. PDR Family Guide to Natural Medicines and Healing Therapies. New York: Three Rivers Press, 1999.
PERIODICALS
Nielsen F.H., C.D. Hunt, and L.M. Mullen, et al. "Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women." FASEB Journal (1987): 394-7.
ORGANIZATIONS
Grand Forks Human Nutrition Research Center. 2420 2nd Ave North. Grand Forks, ND 58202. <http://www.gfhnrc.ars.usda.gov.>
OTHER
Discovery Health. <http://www.discoveryhealth.com>.
Greg Annussek
Boron
Boron
melting point: 2,300°C
boiling point: 2,550°C
density: 2.46g cm3
most common ions: B3+
Boron occurs in nature as part of oxygenated compounds, or borates, that have been known since ancient times for their use in glass and metal production. In 1808 Joseph-Louis Gay-Lussac and Louis Jacques Thenard of France and Humphry Davy of England discovered the element boron almost concurrently. Another century passed before boron was successfully isolated in pure form. Elemental boron in its amorphous form is a dark brown powder; it is a yellowish-brown, hard, brittle solid in its monoclinic crystalline form. It melts at 2,300°C (4,172°F). Boron is unreactive to oxygen, water, acids, and alkalis. Boron compounds burn yellow-green during the flame test.
There are 217 minerals that contain the element boron but few are found in great enough quantities to make them commercially valuable. The few that are found in some quantity are white in color. Some boron-containing minerals, their percentages of boron, and the countries of their production in 2000 are: colemanite (51%), the United States and Turkey; datolite (25%), Russia; kernite (51%), Turkey and the United States; probertite (50%), Turkey and the United States; tincal (36%), Argentina, Turkey, and the United States; and ulexite (53%), Argentina, Bolivia, Peru, Turkey, and the United States. From these minerals, chemical compounds such as borax (sodium borate) and boric acid of various grades are manufactured. These compounds are clear or white. Commercial products, in order of the total quantity of boron consumed, are: fiberglass, borosilicate glass, soaps and detergents, fertilizers, enamels, fire retardants, and alloys .
Sodium borohydride is marketed in powdered or pellet form, and in solution, for use in fuel cells. Boron nitride can withstand temperatures of up to 650°C (1,202°F); when subjected to high pressures and temperatures, it forms cubic crystals whose hardness rivals that of diamond. Boron carbide, produced by reacting coke and boric acid at 2,600°C (4,712°F), is a highly refractory material and one of the hardest substances known. It has both abrasive and abrasion-resistant applications, and is used in nuclear shielding.
see also Davy, Humphry; Gay-Lussac, Joseph-Louis; Nuclear Chemistry.
Phyllis A. Lyday
Bibliography
Garrett, Donald E. (1998). Borates: Handbook of Deposits, Processing, Properties, and Use. New York: Academic Press.
Lyday, Phyllis A. (1985). "Boron." In Mineral Facts and Problems: U.S. Bureau of Mines Bulletin 675. Washington, DC: Government Printing Office.
boron
boron
bo·ron / ˈbôrän/ • n. the chemical element of atomic number 5, a nonmetallic solid. (Symbol: B) DERIVATIVES: bo·ride / -rīd/ n. .