Beckman, Arnold Orville

views updated

BECKMAN, ARNOLD ORVILLE

b. Cullom, Illinois, 10 April 1900, d. La Jolla, California, 18 May 2004)

chemistry, business, civic leader, philanthropy.

Beckman was a man of many parts, as the saying goes. He had really four distinct, albeit interrelated, careers: research scientist and educator; entrepreneur and businessman; civic leader, and philanthropist. His inventions, and the businesses he founded to commercialize them, represented the beginnings of the American chemical instrument industry.

Early Years. Beckman was the son of a blacksmith, George W. Beckman, and his wife Elizabeth. In addition to a younger sister, he had two elder half brothers, born to George Beckman’s deceased first wife. His birthplace, Cullom, Illinois, was then, and still is, a small rural farming community with a population of about 500. Life was fairly austere, a fact for which Beckman later expressed a kind of gratitude; he was forced to improvise. When he was nine, Beckman discovered in the family’s attic a copy of Steele’s Fourteen Weeks in Chemistry, printed in 1861. The book contained instructions for carrying out simple experiments using ordinary household chemicals and other supplies that were commonly available. For his tenth birthday, his father built him a small shed, which became his chemistry laboratory, and Beckman decided at an early age that he would become a chemist. He recalled later that Cullom was lit at night by a few arc lights that burned carbon rods. He and his friends used the stubs of spent rods along with scrap zinc in attempts to form makeshift electric batteries.

Arnold also learned to play the piano in a half-dozen lessons, and before long he was playing as part of a village band. His mother died when he was twelve. After a time his father sold his blacksmith business to become a traveling salesman for a hardware company, moving the family to Bloomington, Illinois, so that his children could have a better education. For the first time, at age fourteen, Beckman lived in a house with indoor plumbing. Arnold won a scholarship to nearby University High School, associated with Illinois State Normal, a state teachers’ college. There he was encouraged to pursue his interest in chemistry. By the time he completed high school he had shown a bent for business; he had started his own company, complete with business cards that read “Bloomington Research Labs,” and had regular work doing analyses for the local gas company. He also became the regular pianist for the local silent movie house, and worked there nearly every night, often improvising to create a mood in keeping with the film being shown.

When Beckman graduated from high school in 1918, the United States was at war, and Beckman joined the U.S. Marine Corps. While temporarily stationed at the

Brooklyn Navy Yard, he met Mabel Meinzer, a local Red Cross volunteer, on Thanksgiving Day in 1918. It would be more than seven years before they were married, but even before then she changed his life in important ways. After being discharged from the Marines, he enrolled in chemistry at the University of Illinois, and focused his interests on physical chemistry. He obtained both bachelor’s and master’s degrees in four years, became engaged to Mabel, and set off for graduate school at the newly formed California Institute of Technology. However, his love for Mabel bested his enthusiasm for chemistry, and at the end of his first year he left graduate school for New York. He obtained employment at the Western Electric Laboratory, which became Bell Laboratories during his employment. Beckman became the first technical employee of Walter A. Shewhart, a pioneer of quality control and efficiency studies of manufacturing processes. Beckman also learned about vacuum tubes and electronic circuit design. The lessons he learned at Bell Labs would later serve him well.

A Life in Academic Science. Beckman’s serious interest in research and chemical science resumed in 1926, after he and Mabel had been married for a year. Arthur A. Noyes, chairman of Caltech’s chemistry department, visited Beckman in New York, and induced him to return to Caltech to complete his PhD work. He took up experimental work in photochemistry and carried out his thesis research under the direction of Roscoe Gilkey Dickinson. His thesis project involved study of the photodecomposition of gaseous hydrogen azide. At issue was whether the decomposition of an explosively unstable molecule such as hydrogen azide would follow a simple law of photochemistry, in which a single photon of incident light would give rise to the decomposition of a fixed and small number of molecules of hydrogen azide, the “quantum yield.” His thesis research, in which he showed that the quantum yield for photodecomposition of hydrogen azide at low pressure is three, was a tour de force of experimental inventiveness and skill in execution, and it foreshadowed the career path that lay ahead.

One of Beckman’s fellow graduate students, Linus Pauling, also studied with Roscoe Dickinson at about the same time. Upon completion of their PhD requirements, both Pauling and Beckman were invited to remain on the Caltech chemistry faculty. In that role, while continuing his researches in photochemistry, Beckman taught experimental design and instrumentation as well as a course in scientific glassblowing (there were few scientific glass supply houses in existence at that time). He clearly had an aptitude for experimental innovation. Even as a graduate student, in 1927, he had applied for and received a patent for a signaling device that would announce to the driver of a car when the car had attained a particular speed. In 1934, he invented a new, nonclogging ink for postal meters. Although the ink contained butyric acid, which has a rancid odor, it was sufficiently promising that Beckman began operating a small business in his spare time. In that same year a former classmate from Illinois who was working in the citrus industry approached Beckman for help in measuring the acidity of lemon juice. There was need for a rugged, accurate, and portable device that could be safely carried. The device that Beckman designed drew upon his experience with electronic circuitry at Bell Labs as well as his knowledge as a physical chemist. His device for measuring pH, or acidity, was revolutionary in two respects: It incorporated electronic amplification into a chemical measurement, and it integrated all the components involved in the measurement into a single compact and readily usable instrument. Using the facilities of the small company with which he was involved, National Technical Laboratories, Beckman and his assistants worked to refine their “acidimeter.” A patent for the device was applied for in 1934 and granted in 1936. In 1935, he began selling the instrument through his small company, after a market research trip with Mabel to scientific supply houses in the East. He was advised that the market could absorb perhaps 600 of the acidimeters, an estimate that in time proved extraordinarily short of the mark. Other patents followed, for example, for a factory-sealed glass electrode, an innovation that captured the glass-electrode market. At this time the Beckman family had become a foursome; when Arnold and Mabel found themselves unable to have children of their own, they adopted two children, Patricia Beckman in 1936 and Arnold Stone Beckman in 1937.

Inventor and Entrepreneur. The acidimeter, now referred to as the pH meter, was a huge success, so much so that in 1939 Beckman decided to resign his position at Caltech and assume the full-time presidency of National Technical Laboratories. With the advent of World War II, the demand for scientific instrumentation rose greatly. Beckman saw that there was a great need for new spectroscopic instrumentation. The model D quartz photoelectric spectrometer, introduced in 1941, followed the philosophy of incorporating all of the components—light source, optical system, and detection—into a single package with convenient controls. With the addition of an ultraviolet capability, the instrument’s name was changed to “DU.” It became one of the most celebrated scientific instruments ever produced. It was fast, accurate, precise, and affordable. When production was finally ended in the 1960s, some 21,000 units had been sold. Here and there a few continued in use in the early twenty-first century. The DU was an important tool in many wartime research efforts, including vitamin research. It was used by Erwin Chargaff in 1946 for the first complete analysis of DNA, providing the basis for Chargaff’s rules. In 1942, Beckman agreed to build infrared spectrophotometers, needed for the American synthetic rubber program. The company eventually produced a long line of high performance infrared instruments to complement its array of ultraviolet-visible spectrophotometers.

A key component of the Beckman pH meters was the “Helipot,” a Beckman-patented helical potentiometer that provided more precise and accurate settings than could be attained in other ways. The Helipot is in effect a precise variable resistor, wound into a helical form and with an accurate, reproducible contact along the wire. During the war a militarized version of the Helipot was needed in instruments such as radars. The demand for the Helipots was so great that a separate subsidiary corporation, with Beckman as owner, was established to produce them. Beckman thus became a manufacturer of electronics components.

Civic Contributions. In the postwar years, with his company (renamed Beckman Instruments, Incorporated, in 1950) growing steadily and expanding into new markets, Beckman gave more of his attention to civic matters. Smog had become a serious environmental problem in the Los Angeles basin, home to both Beckman Instruments and the Beckman family. The mayor of Los Angeles asked Beckman for help, and he in turn recruited Arie J. Haagen-Smit, a Caltech professor of chemistry, to work on the problem. In company with Beckman Instruments scientists, Haagen-Smit established that ozone was the offending pollutant, creating noxious peroxy compounds through oxidation of hydrocarbon emissions, a conclusion counter to the prevailing view that the offending substance was sulfur dioxide. California governor Goodwin J. Knight set up a Special Committee on Air Pollution, and Beckman was appointed as chair. Beckman also played a role in creating the not-for-profit Air Pollution Foundation to support research on solutions to the smog problem. At the same time, Beckman Instruments produced a variety of instruments for the measurement and analysis of atmospheric pollutants. Beckman became president of the Los Angeles Chamber of Commerce in 1956, and he used that position to further argue for measures that would control smog formation. His Chamber of Commerce connections garnered an invitation to accompany Vice President Richard M. Nixon on his trip to Moscow in 1959. He was thus present at the famous “Kitchen Debate” between Nixon and Soviet premier Nikita Khrushchev.

The Expanding World of Beckman Instruments. While William Shockley had been an undergraduate physics major at Caltech, graduating in 1932, he had occasion to seek Beckman’s help with some experimental work. In 1955, Shockley asked Beckman to help him in forming a new company to manufacture semiconductor materials. In due course the Shockley Semiconductor Laboratories was formed in Palo Alto, California, as a subsidiary of Beckman Instruments. All the signs for success of the enterprise were propitious, made even more so by the 1956 Nobel Prize for invention of the transistor shared by Shockley, John Bardeen, and Walter H. Brattain. But it was not to be; Shockley proved to be an inept manager and director of people. Despite many signs of trouble, Beckman was reluctant, out of a sense of loyalty, to remove Shockley from his leadership role. When the needed changes did not occur, a group of eight leading researchers, including Gordon Moore and Robert Noyce, left the company to form Fairchild Semiconductor. The new company was soon successful in manufacturing integrated circuits on silicon-based semiconductors. Noyce and Moore later left Fairchild to form Intel. Shockley Semiconductor never achieved any measure of success, and Beckman sold the subsidiary in 1960. It had not been a profitable investment, but Beckman had provided a major impetus for the explosive growth of Silicon Valley.

Beckman Instruments continued to grow in size and also in the range of its products. The company expanded into international markets. The first international subsidiary, Beckman Instruments GmbH, opened in Munich in 1953, as the first postwar U.S. business in Germany. Beckman expanded into new product lines through careful acquisitions. In 1955, he acquired Spinco, a producer of ultracentrifuges. The Beckman Spinco instruments came to dominate the market, proving to be of immense importance in much biological research. There followed a strong development of biological research tools such as amino acid analyzers and sequencers. In addition, the company produced an ever-expanding line of clinical medical instrumentation, such as the oxygen meter and glucose analyzer.

A New Career: Philanthropy. In 1965, at the age of sixty-five, with the company doing very well, Beckman stepped down as president of Beckman Instruments. It was the beginning of a new phase in his life. While he remained chairman of the board of Beckman Instruments, he had more time for other activities. One of those was chairmanship of the Board of Trustees of Caltech, a position he held until 1974. He and Mabel also launched a program of philanthropy, beginning with several major gifts to Caltech. He also became involved in politics; he was the major organizer of the Lincoln Club, which brought together Orange County, California, businesspeople to support conservative political causes. The activities of this group were key to Richard Nixon’s win of California in the 1968 presidential campaign, which in turn was essential to his winning the election.

In 1981, Beckman agreed to sell his company to SmithKline Corporation, a Philadelphia-based pharmaceutical company. He and Mabel made a decision to disburse most of the very considerable wealth they had accumulated, largely through science-oriented philanthropy. They had created the Arnold and Mabel Beckman Foundation in 1977 as a vehicle for this endeavor. There followed a series of major gifts, beginning with $10 million to City of Hope National Medical Center to establish the Beckman Research Institute there. Following this, the Beckman Laser Institute was built in Irvine, California; it later became a part of the University of California, Irvine. In 1985, the Beckmans awarded the University of Illinois $40 million, contingent upon a $10 million match from the state, for construction of a large, broadly based, multidisciplinary research institute. The Arnold and Mabel Beckman Institute for Advanced Research and Technology held its inauguration in 1989 under the directorship of Theodore L. Brown. By the early 2000s it had become a world-renowned center for interdisciplinary research.

The Beckmans gave Stanford University $12.5 million toward the Arnold and Mabel Beckman Center for Molecular and Genetic Medicine. The Nobel Laureate, Paul Berg, was a leading figure in formulating the Stanford proposal and was the center’s founding director. At Caltech, the Beckmans provided a total of $15 million toward a Laboratory of Chemical Synthesis, followed in 1986 by a $50 million gift to design, construct, and partially endow an interdisciplinary research center, named the Beckman Institute. The eminent chemist Harry B. Gray played a lead role in formulating the plan for the Caltech Beckman Institute and became its founding director. The Beckmans also gave $20 million to the National Academies of Science and Engineering to establish the Arnold and Mabel Beckman Center of the Academies in Irvine, California. Intended as a West Coast base for the Academies, it also serves as a home for the Beckman Foundation. Beyond these major gifts, the Beckman made many additional gifts to a wide range of institutions.

Mabel Beckman died on 1 June 1989; her death was a major blow for Arnold. The Beckmans had always worked as a team in their philanthropy. Although they had given away nearly $200 million during the 1980s, the foundation’s assets were still very substantial. Beckman recast the foundation as a foundation in perpetuity and turned over its direction to a board. As of 2007 the Beckman Foundation supported important programs, such as the Beckman Young Investigator program, designed to assist newly appointed tenure-track faculty in chemistry and the life sciences get their research off to a good start, and the Beckman Scholars Program, which supported undergraduate research in chemistry and the life sciences. In addition, the foundation has funded an innovative $14 million program, Beckman@Science, which provides hands-on training and supplies for teaching science in elementary schools of Orange County, California.

Arnold Beckman lived a long, vigorous, and very productive life. At ninety-nine he still played piano quite well. The Nobel Laureate James D. Watson had this to say of him: “Arnold Beckman’s contributions to science and to society came in part, from his rare talent for creating these new instruments and his decision to make them available to industry and science alike. It has been amplified by his unique philanthropic support of the same forward-looking research that his innovation furthered” (quoted in Arnold and Myers, 2000, p. x) The many recognitions Beckman received include the National Medal of Science (1989), the National Medal of Technology (1988), and the Lifetime Achievement Award of the National Inventor’s Hall of Fame.

BIBLIOGRAPHY

There is a rich archive of Beckman memorabilia and papers in the Beckman Institute at the California Institute of Technology, Pasadena, California.

WORKS BY BECKMAN

“An Improved Quartz Fiber Manometer.” Journal of the Optical Society of America 16 (1928): 276–277.

With Arthur A. Noyes. “The Structure of the Atoms as a Periodic Property and Its Relation to Valence and Ion-Formation.” Chemical Reviews 5 (1928): 85–107.

With Roscoe G. Dickinson. “The Quantum Yield in the Photochemical Decomposition of Hydrogen Azide.” Journal of the American Chemical Society 52 (1930): 124–132.

With Howard H. Cary. “A Quartz Photoelectric Spectrophotometer.” Journal of the Optical Society of America31 (1941): 682–689.

OTHER SOURCES

Stephens, Harrison. Golden Past, Golden Future. Claremont, CA: Claremont University Center, 1985.

Thackray, Arnold, and Minor Myers Jr. Arnold Beckman: One Hundred Years of Excellence. Philadelphia: Chemical Heritage Foundation, 2000.

Vischer, Ernest, and Ervin Chargaff. “The Separation and Characterization of Purines in Minute Amounts of Nucleic Acid Hydrolysates.” Journal of Biological Chemistry168 (1947): 781–782.

———. “The Separation and Quantitative Estimation of Purines and Pyrimidines in Minute Amounts.” Journal of Biological Chemistry176 (1948): 703–714.

Wex, Bridgette, and D. C. Neckers. “The Quantum Yield: An Historical Perspective.” The Spectrum 18 (2005): 10–15, 26.

Theodore L. Brown

More From encyclopedia.com

About this article

Beckman, Arnold Orville

Updated About encyclopedia.com content Print Article

You Might Also Like