Ver Eecke, Paul
VER EECKE, PAUL
(b. Menin, Belgium, 13 February 1867; d. Berchem, Belgium, 14 October 1959)
mathematics
Ver Eecke attended the collège in Menin until he was fifteen and completed his secondary education at Bruges. After graduating as a mining engineer from the University of Liège in 1891 and following a short period in private industry, he entered the Administration du Travail in 1894, where he served until his retirement in 1932. His many honors included membership in the Société Mathématique de Belgique, the Académie Internationale d’Histoire des Sciences, and the Comité Belge d’Histoire des Sciences.
While quite young, Ver Eecke became interested in ancient Greek mathematics, especially in the works of Archimedes, and his first publication (1921) was a French translation of the complete works of Archimedes. Nearly all his scholarship concerned the translation of Greek mathematical works into French, the only exceptions being his translations from the Latin into French of the Liber quadratorum of Leonardo Fibonacci (written in 1225) and a treatise by Vito Caravelli. He carried out this work not as a philologist but as a scientist, adhering closely to the Greek text. His translations were preceded by surveys of the periods in which the mathematicians lived; and in the footnotes Ver Eecke gave the proofs in modern notation. Ver Eecke thus provided historians of science with a fairly accurate reflection of thought in antiquity and the scientific significance of the works.
In addition to translations Ver Eecke also wrote articles. In “Le théorème dit de Guldin considéré au point de vue historique” he defended the assumption that the law bearing his name was original with Guldin. Ver Eecke’s arguments were, however, rejected by R. C. Archibald (Scripta mathematica, 1 [1932], 267).
BIBLIOGRAPHY
Ver Eecke’s works include Les oeuvres complètes d’Archimède (Brussels, 1921); Les Coniques d’Apollonius de Perge (Bruges, 1923; repr. Paris, 1963); Diophante d’Alexandrie. Les six livers arithmètiques et le livre des nombers polygones (Bruges, 1926); Les Sphèriques de Thèodose de Tripoli (Bruges, 1927); Serenus d’Antinoë, Le livre “De la section du cylindre” et le livre “De la section du cône” (Paris-Bruges, 1929); “Note sur le procédé de la démontration indirecte chez les géomètres d l’antiquité grecque,” in Mathesis, 44 (1930), 382–384; “Note sur la théorie du plan incliné chez les mathérèmaticiens grecs,” ibid., 45 (1931), 352–355; “Le thèorème dit de Guldin considérè au point de vue historique,” ibid., 46 (1932), 395–397; “La mécanique des Grecs d’après Pappus d’Alexandrie,” in Scientia (Milan), 54 (1933), 114–122; Pappus d’Alexandrie, La Collection mathématique (Paris-Bruges, 1933); “Le traitè des hosoèdres de Vito Caravelli (1724–1800),” in Mathesis, 49 (1935), 59–82; “Le traitè du mètrage des divers bois de Didyme d’Alexandrie,” in Annales de la Sociètè scientifique de Bruxelles, ser. A. 56 (1936), 6–16; “Note sur une dèmonstration antique d’un théorème de liew géométrique,” in Mathesis, 51 (1937), 11–14; Euclide, L’Optique et la Catoptrique (Paris–Bruges, 1938); “Note sur une interprètation erronèe d’une dèfinition pythagoricienne de la ligne gèomètrique,” in Antiquitè classique, 7 (1938), 271–273; Les opuscules mathèmatiques de Didyme, Diophane et Anthemius, suivis du fragment mathèmatique de Bobbio (Paris–Bruges, 1940); Proclus de Lycie. Les commentaires sur le premier livre des Elèments d’Euclide (Bruges, 1948); and Lèonard de Pise. Le livre des nombres carrès (Bruges, 1952).
H. L. L. Busard