Technology: Overview
TECHNOLOGY: OVERVIEW
Technology may be broadly defined as the making and using of artifacts. In its simplest forms, however, use will involve no more than natural objects, and in more abstract instances fabrication and use can both be of concepts—in which case logic may be described as a technology. The etymology of the word leads back to the Greek techne, from which is derived technique and technics. In the opening lines of Nicomachean Ethics, Aristotle (384–322 b.c.e.) observed that "Every techne and every inquiry, and similarly every praxis and pursuit, is believed to aim at some good" (1.1.1094a). Thus the centrality of human ends or intentions to technology makes ethical analyses vital. Ethical inquiry is made difficult, however, by the diversity of ways technology can be understood. According to one proposed analysis, technology may be distinguished into objects, knowledge, activities, and intentions (Mitcham 1994). Each of these types of technology constitutes a source and challenge for ethics.
Historical Dimensions
Before considering these different types of technology, which are covered in a plethora of entries in this encyclopedia, there are historical transformations from technics to technology to acknowledge. These transitions, which are also often described as shifts from ancient to modern or from prescientific to scientific technology, can be discussed in terms of artifacts and attitudes. In relation to artifacts, humans used lithic (or stone) tools from the early Paleolithic period (about 2.6 million years ago) up to the close of the Neolithic period around 5,000 years ago. The widespread control of fire occurred roughly 124,000 years ago and crops were domesticated around 10,000 years ago. Up until approximately 40,000 years ago, the interplay between human physiology and technics no doubt influenced the evolution of human cognitive and other physical capacities.
The development of bronze and iron tools marked the end of the Neolithic and the transition into the classical age, in which technological artifacts in the form of structures became increasingly significant. Premodern structures, initially in the early civilizations of Egypt, Mesopotamia, India, and China, then especially in China's Han dynasty (206 b.c.e.–220 b.c.e.) and the Greek and Roman periods in Europe, became interrelated with governance, and the works of architects began to influence daily life. In the European Middle Ages progressive developments in mechanics and the harnessing of nonhuman sources of power promoted further change in artifactual history.
The emergence of technology in a distinctly modern sense is correlated with the rise of modernity itself. Through the Industrial Revolution tools, machines, structures, industrial processes, and mass-produced consumer goods increased in complexity and number, acquiring an unprecedented societal influence. Additionally, during and after the Enlightenment, technology became progressively associated with accumulating scientific knowledge, to the point where, in the late twentieth century the connection was occasionally denominated with the term technoscience.
In relation to attitudes, which exhibit inherently ethical components, history may be broken out into a threefold taxonomy of arguments about technology and its proper role in the good life. Although partially historical, these basic attitudes (with countless gradations) nevertheless continue to coexist today. First, ancient or premodern attitudes about technology were generally skeptical, tending to view it as a necessary but dangerous turning away from God or the gods. Artifacts were judged to be less real than natural objects, technical information was not considered true wisdom, and technical affluence was thought to undermine higher goods such as individual virtue and political stability.
Second, modern Enlightenment attitudes about technology were optimistic, viewing it as a means of socializing individuals and creating public wealth. The will to technology was ordained by God or nature. Technical engagement with the world provided true knowledge, and nature and artifice were judged as operating by the same mechanical principles.
Finally, Romantic attitudes about technology reintroduced a degree of premodern uneasiness to constitute an ambivalence that tried to strike a middle ground between premodern skepticism and modern enthusiasm. Technology was viewed as one manifestation of human creativity, and thus to be affirmed, but also as manifesting a lamentable tendency to crowd out other forms of creativity. Technology engendered freedom but simultaneously alienated individuals from affective strength, weakened cultural bonds, and introduced new forms of social control. Artifacts expanded the processes of life, but imagination and vision deserved to be defended against the encroachments of technical knowledge.
Technology as Object
Technology is most commonly thought of in terms of artifacts, physical objects designed and produced by human beings. Ethical issues related to artifacts include the concerns of health and safety. These are especially illustrated by elements of risk and uncertainty, because it is often impossible to predict how objects will interact with the complex physiological, social, and ecological contexts in which they are deployed. Important work in engineering design seeks to integrate safety concerns throughout the process, but in some sense accidents and failures may be an inevitable part of complex modern artifacts.
Other ethical issues stem from justice and equity concerns that arise, for example, in cases of technology transfer and other manifestations of globalization. Matters of justice and equality are also involved in the representation of females and minorities in technology development and application policies. Freedom is a further important consideration in debates about technological determinism (in the thought of Jacques Ellul) or the liberating potential of technology (as argued by Julian Simon). Moreover, philosophers such as Langdon Winner have argued that artifacts have politics, in that they may be intentionally designed to limit the freedoms of certain groups. Other objects inherently lead to different political systems of control along the spectrum from authoritarianism to democracy.
Technological objects raise additional ethical and phenomenological questions about how they influence individual and group self-identities. For example, the design of buildings and public spaces in urban environments, in addition to impacts on safety, health, and equity, influence community character and quality of life. Finally, there is a sense in which technological objects as consumer goods can alter both culture and, through pollution and waste, the natural environment.
Not only do many of the key themes just mentioned have their special entries, but sample encyclopedia entries on almost any technology—from "Airplanes" and "Biological Weapons" to "Movies" and "Television"—illustrate these issues. Entries on thinkers such as "Anders, Günther," "Ellul, Jacques," "Illich, Ivan," and "Simon, Julian" present particular arguments. Slightly more general discussions that emphasize structures and hardware can be found in "Architectural Ethics" and "Computer Ethics," respectively.
Technology as Knowledge
Much of the philosophical work on technology as knowledge has naturally been epistemological, but ethical issues have also received consideration. One of these concerns freedom of speech and censorship. For example, terrorist threats highlight the dual-use character of technical knowledge, which may often be used for beneficial as well as nefarious purposes. This raises age-old questions about whether some knowledge should be forbidden, or if not, how its production and exchange should be regulated. Because technoscientific knowledge is not easily separable from applications, it may not be feasible or wise to argue that ethical considerations need only take place after knowledge has been produced.
With advances in genetics and information technologies, the issue of intellectual property rights has sparked debate about the ethical and societal implications of the private ownership of technical knowledge. Pertinent topics in this area are open-source software and the patenting of genetic material. In agriculture, the latter area has raised difficult questions about the legal status of indigenous technical know-how. Another important topic is the increasing privatization of academia driven by incentives for university researchers to patent the technological products that result from their research. This raises ethical issues about the proper role of the academy and the value of open information exchange in science.
One last broad set of ethical issues is raised by the theme of expertise and the role of experts, especially engineers, in a democracy. Many problems in modern industrial societies require the specialized knowledge of engineers, but most would claim that a technocracy, or rule by experts, represents an undesirable departure from democratic ideals. (It is worth noting, however, that in some cases technocrats are praised because of their lack of attachment to fundamentalist political or religious ideologies; technical knowledge and competence has its virtues.) Although engineers have much to offer regarding management and policy decisions, many nontechnical or political issues tend to become unproductively debated as if they could be resolved by technical knowledge. Other issues related to the accumulation of specialized knowledge by experts are the deskilling of the workforce, equity concerns about access to education, and widespread technological illiteracy even in societies utterly dependent on the smooth functioning of technological systems. All of these issues raise important questions about knowledge as a form of power.
Encyclopedia entries that deal directly with technology as knowledge thus include those on "Expertise," "Intellectual Property," "Public Understanding of Science," and "Technocracy." Related questions are also addressed in more general entries on, for example, "Computer Ethics" and "Information Ethics."
Technology as Activity
Technology as activity shades from personal to institutional and social modes. It may conveniently be divided into the two broad themes of production and use. With regard to production, most of the ethical issues are internal to the various technical professions. They raise issues of professional, engineering, and management ethics, which are often formalized in codes of ethics and are being increasingly integrated with professional training and education programs. Different ethical issues arise along the spectrum of engineering functions from the initiating actions of inventing and designing to the subsequent processes of testing, constructing, and operating. But across the board one common theme is that of the social responsibility of engineers, managers, and the organizations in which they are embedded.
Technology as activity is nevertheless more complex than a one-way flow of products from invention to application or use. Not only are engineers influenced in subtle ways by cultural norms, their work is often consciously informed and directed by formal and informal involvements of governments and publics. These take the broad form of technical standards, regulation, and technology policy, as various institutions and actors engage in decision-making procedures about which technologies to produce, ban, limit, or otherwise manage. Examples include regulatory bodies such as the Food and Drug Administration (FDA), advisory bodies such as bioethics commissions, and technology assessment agencies such as the Office of Technology Assessment (OTA) or tools such as environmental impact statements. Public decisions about the production and use of technology raise manifold ethical issues about who should be involved, how involvements should be structured, how risks, costs, and benefits should be measured, and what goals should drive the policymaking process. Broader debate occurs over the proper roles of market mechanisms and government control.
Ethical analyses of the use of technology flow naturally from the fact that such uses are subordinate to, or in the service of, some goal. Issues of use often raise the question of whether artifacts can be considered ethically neutral. For example, computer technology can be used to help researchers find cures for diseases, or it can be used to hack into financial systems and steal money. Although it is common to conceptualize technology in this way, there is significant evidence for the nonneutrality of technology.
Indeed technological changes fundamentally alter human experiences in ways that can be judged good or bad, but certainly not neutral. Such changes are best illustrated by work, the most prominent form of technology as activity. The large-scale production and use of modern technologies has brought about the transformation of craftwork into industrial labor, which is marked by division of labor, mass production standardization, and bureaucratic organization.
For more analysis of the ethical issues related to technology as activity it is thus useful to consider encyclopedia entries on "Professions and Professionalism," specific professional organizations such as the "Institute of Electrical and Electronics Engineers," and regulatory agencies such as the "Food and Drug Administration" and the "Federal Aviation Administration." Also relevant would be entries on the principles that are said to guide much technical activity such as "Efficiency," "Safety," and "Reliability."
On a philosophic note, it is also important to consider how technological activities or processes of a more impersonal sort alter human relationships and relationships between humans and nature. The entry on "Tools and Machines" makes suggestions with regard to human–human relationships. The entry on "Arendt, Hannah," provides further background to her argument about the ways traditional technics or premodern technology was limited by the materials and energy given in nature. The development of steam, electric, and nuclear power qualitatively changed this human–nature relationship. Finally, Arendt noted how technology as action is a deeply troubling contradiction. Traditionally, action was associated with the political realm and its qualities of plurality, indeterminacy, and choice. Modern mass society has subordinated this realm to the pursuit of scientific technology and technologically mediated work, an effort that seeks to replace the contingencies of nature and the polis with the control and certainty of technology. Ethical and metaphysical quandaries result about the modern attempt to control, manage, and even make nature. Much of the rhetoric around the notion of ecological sustainability, for example, is dominated by concerns of control and efficiency rather than political and ethical considerations of the meaning of the good life and humankind's proper relationship with other species. And contemporary worries about the uncertainty of much scientific and technical knowledge would arise only in a world that aspired to certainty in human affairs.
Technology as Intention
Technology as intention is at once the most basic yet the most difficult to consider. As Aristotle noted, neither technics nor technology can exist without the exercise of intentionality. Moreover, because ethics is itself so closely tied to the idea of intentions and their assessment, to think of technology as intention would seem to bring technology more closely into the ethical realm than to think of technology as object, knowledge, or perhaps even action. At the same time, the slipperyness of intentionality presents its own difficulties, especially in relation to technology. Is there any such thing as a distinctively technological intention in the same way there are technological objects, forms of knowledge, and activities? Is it possible, for instance, to distinguish between religious, political, and technological intentions—or between premodern and modern technology in terms of intentionalities? Or are intentions just mental states to which technical activities are necessarily subordinated? Is there one intention to procure food, which can then be achieved by, say, political or technological means? But surely the intentional selection of technological over political means constitutes a kind of technological intention. (See, in this respect, the entry on "Technological Fix.")
The most common way in which intentionality has been invoked when examining the ethics of technology is in fact in relation to the idea of modern technology as emanating from a distinctive will or volition, a philosophical argument more common to phenomenological than to analytic traditions in philosophy. Discussions of technology as volition span the spectrum from technology as a creative life force to technology as a restricting urge to control. Technology can be celebrated in a Nietzschean aesthetics of self-making in the project to wrest control of life from the vagaries of nature and even achieve immortality. But there is a sense in which technologies have a "will of their own" and are not infinitely plastic to the impress of different human intentions. Perhaps it is not just human intentions or volitions that shape technology, but technologies that also influence human intentions. There are limits to what one can do with any particular technology: It is difficult to use a hammer to screw a nut onto a bolt.
To analyze technology as a form of intentionality further requires that ethical assessments of use be coupled with empirical work on the properties of technologies. One form this has taken is to conceptualize intending as a form of decision making, which may in turn be undertaken by rational analysis. More generally, the increasing powers unleashed by modern technology suggest a need for increased knowledge of what ends they are to serve and knowledge of the consequences before they are put into use. But such needs must themselves be translated into action. And failure to take action is a form of weakness of intention or will that recurs frequently in situations of public and personal decisions about technology.
Most discussions of the ethics of technology deal with specific technologies: biomedical technologies, computers, nuclear weapons, and more. But in a few instances philosophers working in the phenomenological tradition have sought to bridge technological divides and consider the parameters of technology as a whole. Here the contributions of such thinkers as "Anders, Günther" and "Jonas, Hans" as well as "Heidegger, Martin" are especially significant. Related discussions can be found in entries on such philosophical schools as "Existentialism" and "Critical Social Theory."
Generalization
The distinctions between ethical issues in technology as object, as knowledge, as activity, and as intention should not serve to excuse anyone from thinking about ethics and technology in other ways as well—or for seeking to integrate these four modes of the manifestation of technology. For instance, Albert Borgmann's provocative interpretation of modern technological objects as tending toward what he terms the "device paradigm" of supplying some commodity with minimal human engagement and contextual dependency at the same time depends on a unique form of (virtual) knowledge and sponsors a distinctive type of (unfocused) activity. Borgmann's ethical assessment of technological devices is coordinate with his ethical judgment regarding technological knowledge and activity. To distribute ethical issues across a spectrum of manifestations of technology may serve simply as a provisional means for appreciating the breadth of concerns that fall under the idea of relating technology and ethics. Similarly, Don Ihde's analysis of different forms of human engagement with technology—from embodied extension to perceptual transformation—crosses the boundaries of technology as object, knowledge, and action in ways that invite scientists, engineers, and the general public to ask broad ethical questions about the techno-lifeworld they are in the process of creating.
Finally, the breadth of concerns must not be thought of as one determined only by problems. The praise of technology that is distinctive of the modern project and Enlightenment aspirations invests technology with rich ethical promise for better goods and services, understanding, human health, and intentional fulfillment. From this perspective the ethical problems are addressed so that they can be negotiated with that distinctively human behavior that originally gave rise to all technology, ancient and modern, in order to pursue and promote true human flourishing. Problems need not be limitations; they can also be conceived as the stimulus to new achievements.
ADAM BRIGGLE CARL MITCHAM MARTIN RYDER
SEE ALSO Architectural Ethics;Computer Ethics;Engineering Design Ethics; Engineering Ethics: Overview;Ethics: Overview;Expertise;Industrial Revolution;Professions and Professionalism.
BIBLIOGRAPHY
Barbour, Ian G. (1993). Ethics in an Age of Technology. San Francisco: HarperSanFrancisco. This is the second of two volumes, the first of which dealt with science and religion.
Borgmann, Albert. (1984). Technology and the Character of Contemporary Life: A Philosophical Inquiry. Chicago: University of Chicago Press. A provocative interpretation of the special character of modern technology as object.
Chadwick, Ruth, ed. (2001). The Concise Encyclopedia of the Ethics of New Technologies. San Diego, CA: Academic Press. Thirty-seven articles on various technologies (biotechnology, genetic engineering, nuclear power) and related issues (brain death, intrinsic and instrumental value, precautionary principle) selected from the Encyclopedia of Applied Ethics (1998).
Ihde, Don. (1990). Technology and the Lifeworld: From Garden to Earth. Bloomington: Indiana University Press. A broad phenomenological analysis of human-technology interactions.
Jonas, Hans. (1984). The Imperative of Responsibility: In Search of an Ethics for the Technological Age, trans. Hans Jonas and David Herr. Chicago: University of Chicago Press. Combines two German books published first in 1979 and 1981.
Kaplan, David M., ed. (2004). Readings in the Philosophy of Technology. Lanham, MD: Rowman and Littlefield. Includes substantial sections on ethics and politics.
Mitcham, Carl. (1994). Thinking through Technology: The Path between Engineering and Philosophy. Chicago: University of Chicago Press.
Mitcham, Carl, and Robert Mackey, eds. (1983). Philosophy and Technology: Readings in the Philosophical Problems of Technology. New York: Free Press. The "Ethical-Political Critiques" section includes a number of classic texts; other articles in this early collection are also relevant.
Tavani, Herman T. (2003). Ethics and Technology: Ethical Issues in an Age of Information and Communication Technology. Hoboken, NJ: Wiley.
Winner, Langdon. (1986). The Whale and the Reactor: A Search for Limits in an Age of High Technology. Chicago: University of Chicago Press.
INTERNET RESOURCE
"The Online Ethics Center for Engineering and Science." Case Western Reserve University. Available from http://onlineethics.org.