Breeder
Breeder
Plant breeding is the art and science of improving plant characteristics through the process of sexual reproduction. The goal of a plant breeder is to transfer genes from one plant to another and to select offspring that have superior growth, yield, pest and disease resistance, or some other desirable trait.
To achieve this goal the breeder often begins the breeding process using primitive or wild forms of a particular plant species. Through a process of repeated sexual crossing and selection of improved forms, the breeder gradually reaches the goal. Often the hybridization process is lengthy, requiring time for the seed to grow into a mature flowering plant, which can then be compared to a population of seedlings from previous crosses. The newly selected plant is again sexually crossed with other improved plant types and gradually the desired trait or traits are incorporated into the new hybrid selection.
Plant breeders are trained in the science of genetics. Some receive a bachelor's degree in science, while others go on to earn a doctoral degree. This training is usually combined with a specialization in one or more types of crops such as grains, oilseeds, fruits, vegetable forage crops, or ornamental plants. A successful plant breeder must thoroughly understand the physiology and reproductive patterns and characteristics of the breeding materials. Selecting for improved traits requires both the application of genetic principles as well as the ability to recognize sometimes small but very important changes in the plants when they are selected from one generation to the next during the breeding process. A well-trained plant breeder will also have knowledge of the "new genetics" of molecular biology and molecular genetics. Modern plant breeding combines the classical approach of sexual breeding with an understanding of gene structure. This knowledge allows the breeder to more rapidly combine desirable traits in the breeding population by establishing molecular genetic markers that can be associated with those traits.
Creativity is an important part of plant breeding. And developing a new plant that will increase the food supply or contribute to the beauty of the environment is quite rewarding. There are many career choices available to a plant breeder with training in molecular biology and classical breeding principles. One career path involves the application of genetic principles to plant improvement in a field or greenhouse. This is the role of the traditional breeder in the development of new plant varieties. There is a great need for individuals who possess these skills. Combining this role with training in molecular genetics increases the effectiveness of the breeder. Molecular genetics training also enables the breeder to work in a laboratory environment. Information developed in the laboratory can be transferred to breeders who use the information in a classical breeding program.
Typically, a plant breeder may teach and conduct research in a university or government laboratory. Many seed companies and biotechnology organizations employ plant breeders as well. Entry-level salaries in the 1990s ranged from $40,000 in an academic or government job to $60,000 to $80,000 in private industry.
see also Breeding; Genetic Engineer.
Roger H. Lawson