Golgi Body
Golgi body
The Golgi body, or Golgi apparatus is a collection of flattened membrane sacks called cisternae that carry out the processing, packaging, and sorting of a variety of cellular products in higher plants and animals. This important cellular organelle was named in honor of Camillo Golgi , the Italian neuroanatomist who first described it in brain cells late in the nineteenth century. An individual Golgi apparatus is usually composed of four to eight cisternae, each a micron or less in diameter stacked on top of each other like pancakes. Many cisternal stacks interconnected by tubules and mobile transport vesicles make up a Golgi complex, which often is located near the nucleus in the center of the cell. In some animal cells, this complex can be huge, filling much of the cytoplasmic space. In some plant cells, on the other hand, many small, apparently independent Golgi apparatuses are distributed throughout the cell interior.
Each Golgi stack has a distinct orientation. The cis or entry face is the site at which transport vesicles bringing newly synthesized products from the endoplasmic reticulum dock with and add their contents to the Golgi cisternae. A complex network of anastomosing (connecting) membrane tubules attach to and cover the fenestrated cisternae on the cis face and serves as a docking site for transport vesicles. From the cis face a flow of vesicles carry transport and chaperone proteins back to the endoplasmic reticulum, while secretory products move on into the medial cisternae where further processing takes place. Finally, the products move to the trans or exit face where they undergo final processing, sorting, and packaging into vesicles that will carry them to the cell surface for secretion or to other cellular organelles for storage or use. Complex oligosaccharides are synthesized in the Golgi apparatus, and glycoproteins are assembled as materials move through the compartments of this organelle. A unique set of enzymes and chaperone proteins occur in each of the Golgi compartments to direct and carry out this complex set of reactions.
See also Cell cycle and cell division; Cell membrane transport
Golgi Body
Golgi Body
A Golgi body is a collection of membranes inside a cell that packages and transports substances made by the cell. All eukaryotic cells have one or more Golgi bodies that work closely with the endoplasmic reticulum (a network of membranes, or tubes, in a cell through which materials move). A eukaryotic cell is one with a distinct nucleus (such as a plant or animal cell).
Golgi bodies were named after Italian anatomist (a person specializing in the structure of animals) Camillo Golgi (1843–1926), who first saw them in brain cells late in the nineteenth century. Golgi was able to see these tiny organelles (or cell structures that have certain functions) because of his discovery of a particular cell stain. Golgi found that by staining nerve cells with silver nitrate, he was able to see details that were not otherwise visible. He was also able to make out all of the very fine extensions that branched off the Golgi bodies. Looking like a stack of flattened bags, these piles of membranes are usually found close by the nucleus and work closely with the cell's endoplasmic reticulum (which make proteins). Their function is to package the proteins made by the cell, and they literally wrap these proteins in membranes. The proteins then travel either to another part of the cell or to the cell membrane to be transferred outside the cell. Golgi bodies also work on any "unfinished" proteins that the endoplasmic reticulum has created. Sometimes these proteins need a bit more tinkering or finishing before storage or use, and it is the Golgi bodies that perform whatever chemical modifications are necessary. Golgi bodies are also called Golgi apparatus. They have also been referred to as the Golgi complex.
[See alsoCell; Endoplasmic Reticulum; Membrane ]